度,然而却不能改变边的曲率,是不能把线段变成曲线。
在合适的材料没有设计出来之前,可以使用N个共边共顶点菱形的方式,用材料的数量,来弥补材料的性能不足,只是这需要很高的安装精度,以及每次发射之后,如果材料发生形变,还需要进行替换或材料重加工。
因为最速降线同海拔高度同初始速度,加速度都是一样的,可以设计N个最速降线互相平行,从而用于给超高发射质量的航天器提供加速度。
考虑到对地球的影响,一般建议在航天基地的反作用力方向和地球公转方向一致的时候弹射,这样,能够避免影响地球的公转速度。
2:月球流星锤弹射系统
之前讲解过,详见第一百三十七章;把角速度通过足够长的链条转化为圆周线速度。
3:倒立T字形弹射系统
这种应用原理和前面讲到的最速降线对顶角弹射系统不同。
整个系统使用多个支点,以及多个直角杠杆,是系统开机时,把所有空艇都打开,杠杆到达最高水平夹角位置,是水平夹角45度或水平夹角60度,然后直角杠杆和一个个的对顶角组合成的菱形连接,当然,为了保险一点,都是采用2N个同样长度的杆子,使用点阵的轴铆接方式,生成很多个有共边有共点菱形,需要开机时,只需要让所有空艇都把真空容器的上底面和下底面打开,让圆柱空艇变成环柱风力发电机,能用重力砝码接收重力加速度,从而可以进行弹射,这种系统一般都需要在地面安装一定数量的水池,好缓冲重力加速度对环境地面的力污染。
是最速降线对顶角弹射系统更适合在多山的地方安装,而倒立T字形弹射系统更适合在平地的地方安装。
4:履带式悬崖弹射系统
找一个海拔差足够高的悬崖或人造一个人工悬崖,通过天伞工业园,获得足够多的雨水,这些雨水可以用于以海拔差垂直向下加速度用于加速重力加速度。
履带向下的位置,是水容器以及砝码挂钩